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Abstract: We attempt to find a rigorous formulation for the massive type IIA orientifold

compactifications of string theory introduced in [1]. An approximate double T-duality

converts this background into IIA string theory on a twisted torus, but various arguments

indicate that the back reaction of the orientifold on this geometry is large. In particular, an

AdS calculation of the entropy suggests a scaling appropriate for N M2-branes, in a certain

limit of the compactification, though not the one studied in [1]. The M-theory lift of this

specific regime is not 4 dimensional. We suggest that the generic limit of the background

corresponds to a situation analogous to F-theory, where the string coupling is small in some

regions of a compact geometry, and large in others, so that neither a long wavelength 11D

SUGRA expansion, nor a world sheet expansion exists for these compactifications. We end

with a speculation on the nature of the generic compactification.
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1. Introduction

Flux compactifications [2] provide the arena for most of the discussions of the String Land-

scape as well as modern approaches to string phenomenology. The discussion of these

compactifications is generally carried out in low energy effective field theory [3, 4], despite

the fact that they all contain orientifold singularities. Further, there is no perturbative

world sheet treatment of these backgrounds. Recently, DeWolfe et al.[1] introduced a se-

quence of models characterized by an integer N . Earlier work on similar type IIA flux

compactifications was done in [5]. The DeWolfe et al. compactifications are classical

solutions of Type IIA SUGRA, with a singular orientifold source and a variety of Ramond-

Ramond and Neveu Schwarz fluxes. The parameter N is related to the value of certain

quantized fluxes, and may be taken arbitrarily large. This is in marked contrast to typical

flux compactifications, where fluxes are bounded [6]. The authors of [1] argue that for large

N the moduli can be stabilized at values where all radii are large compared to the string

scale, and the string coupling is small. Furthermore, the four non-compact directions are

an AdS space with a radius RAdS whose ratio to the compactification scale grows with

N . The latter property is in marked contrast to the sequences of models treated in the

AdS/CFT correspondence.

Our aim in this paper is to investigate further the models of [1], and to determine

whether they admit a systematic low energy field theory expansion (see also [7]) and/or a

weakly coupled string expansion. The inevitable orientifold of flux compactifications is one

potential barrier to an effective field theory treatment.1 In addition, these models contain a

ten form flux F0, and correspond to solutions of the massive Type IIA SUGRA Lagrangian.

It is well known that quantization of F0 is a problem for effective field theory, and that the

massive Type IIA string theory does not have a perturbative world sheet expansion (the

D8-brane solution of this theory has a string coupling which grows at infinity). In addition,

the effective field theory treatment has the usual problem of orientifold singularities. Thus

despite apparently small parameters, it is far from clear that there is a systematic large N

expansion of this system.

We approach this problem indirectly. Ignoring the back reaction of the orientifold, we

perform a double T-duality on the DeWolfe et al. background.2 The result is Type IIA

string theory on a twisted torus, with flux only in the four AdS directions. Despite the fact

that this configuration does not satisfy tadpole cancellation, the T-duality is a legitimate

operation on the orbifold CFT. We then restore tadpole cancellation in the T-dual picture

(the formal dual of the original orientifold).

Regime with one large 4-flux: We argue that the resulting model in this regime does

not have a weakly coupled Type IIA world sheet expansion. In this limit, from the point

of view of DeWolfe et al., the string coupling remains weak, the scales of both AdS4 and

1G. Moore and S. Ramanujam have emphasized to us the problems with the back reaction of the

orientifold, which they have analyzed extensively in the context of the original DeWolfe et al. solutions [8].
2We work in the orbifold limit. The authors of [1] took pains to show that the blow up moduli of the

orbifold can be stabilized at large values of the radii of shrinking cycles. We address the analogous question

in the T-dual picture.
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the compact manifold are large, and the Kaluza-Klein radius is parametrically smaller.

However, some cycles on the compact manifold shrink to zero size, and this is not a limit

in which DeWolfe et al. would claim to have a controlled expansion. In the limit where

we only turn on one four form flux, the fixed temperature entropy computed from the AdS

geometry scales like N3/2 as one would expect from a large number of M2-branes. We show

that this is explained in the T-dual IIA picture by a large number of D2-branes sitting at

the orientifold locus, where the string coupling is large. The D2/M2 world volumes are in

the AdS directions. In typical orientifold compactifications that have been studied in string

theory, those with a known world sheet expansion, the effect of the orientifold is confined to

a region of order string scale. Here we argue that this is not the case, since the parameter

N , which apparently tunes the string coupling to be small, in fact counts a large number

of branes near the orientifold singularity. We argue that in fact the strong coupling region

completely dominates the geometry in the single flux limit. The resulting theory for large

N is M-theory on AdS4 × M7, where M7 is a manifold of weak G2 holonomy. The AdS

and compact radii scale the same way with N .

Regime with all 4-flux large: For the generic regime of the background, we find that

11D SUGRA is not a valid approximation. This is a consequence of the small string

coupling found by DeWolfe et al., combined with the observation that the AdS radius is

much larger than that of the compact manifold computed using our naive T-duality rules.

Thus, in this region where DeWolfe et al. claimed a systematic expansion, many features

of their picture are valid. However, our picture also includes large numbers of D-branes

sitting at the orientifold locus in the regime where all fluxes are large. We argue that

the weak coupling approximation breaks down in a vicinity of the orientifold whose size

scales like N1/20ls. This rules out a uniform weak coupling expansion in the large N limit.

Furthermore, if we apply 11D SUGRA to the region around the orientifold, it suggests that

this region actually blows up to a seven manifold whose radius of curvature is of order the

AdS radius. In the conclusions, we also provide a heuristic explanation of the peculiar N9/2

entropy scaling of the regime with all fluxes large. This argument also seems to require a

compact manifold with volume much larger than that suggested by De Wolfe et al..

Our conclusion is that the generic DeWolfe et al. configuration probably exists as a

valid model of quantum gravity in AdS4. However, it is unclear to us whether is has a com-

pactification radius parametrically smaller than the AdS radius. No existing approximation

scheme computes its large N expansion. Different approximations, apparently valid in dif-

ferent regions of the compact manifold suggest different values for the ratio of scales. The

problem of different approximation schemes for different regions is somewhat analogous to

F-theory solutions for fluxless compactifications. However, the large supersymmetry alge-

bra of F-theory compactifications provides reliable computational tools, which are absent

for these models.

The paper is organized as follows. In section 2, we review the DeWolfe et al. back-

ground. In section 3, we transform the background by a double T-duality, using the

approximations noted above. This allows us to eliminate the massive type IIA flux. We

also comment on the approximate character of the transformation. Section 4 deals with
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the Bianchi condition for the dualized background. In section 5, we will argue that the

DeWolfe et al. solution with one large flux should be considered in an M-theory setting.

We will explicitly lift the dualized background to M-theory. Section 6 will detail some of

the aspects of the obtained 11D SUGRA solution. We will discuss its interpretation as

a stack of M2-branes. We conclude in section 7 where we speculate on the nature of the

generic DeWolfe et al. compactification. Appendix A and B give some more details on

the double T-duality transformation of the DeWolfe et al. background, while appendix C

reviews the formulas to lift the background to M-theory.

2. The DeWolfe et al. background

2.1 The metric, fluxes and discrete symmetries of the solution

In [1], DeWolfe et al. describe an infinite set of N = 1 solutions of massive type IIA

SUGRA [9]. The compact manifold in their solution is T 2 ×T 2 ×T 2, modded out by three

discrete symmetries:

• Ωp(−1)FLσ with σ : zi → −z̄i

• T : (z1, z2, z3) → (α2z1, α
2z2, α

2z3)

• Q : (z1, z2, z3) → (α2z1 + 1+α
3 , α4z2 + 1+α

3 , z3 + 1+α
3 )

with α = e2πi/6. The resulting space is orientifolded T 6/Z
2
3. The combination of the

imposed discrete symmetries and fluxes turned on leads to a background where all moduli

are fixed. The metric and the fluxes of the background are given by,

ds2 = γ1(dx2
1 + dx2

2) + γ2(dx2
3 + dx2

4) + γ3(dx2
5 + dx2

6) + ds2
AdS4

(2.1)

H3 = −4π2α′h3 β0 (2.2)

= −4π2α′h3
4
√

3
√

2 (dx1 ∧ dx3 ∧ dx5 − dx1 ∧ dx4 ∧ dx6

− dx2 ∧ dx3 ∧ dx6 − dx2 ∧ dx4 ∧ dx5) (2.3)

eϕ =
1

4
|h3| 4

√

335

|f0f1
4 f2

4 f3
4 |

(2.4)

F4 = (2π
√

α′)3 3
√

κf i
4w̃

i (2.5)

= 4(2π
√

α′)3
3
√

3
(

f1
4 dx3 ∧ dx4 ∧ dx5 ∧ dx6

+ f2
4 dx5 ∧ dx6 ∧ dx1 ∧ dx2 (2.6)

+ f3
4 dx1 ∧ dx2 ∧ dx3 ∧ dx4

)

F2 ≈ 0 (2.7)

F0 =
f0

2π
√

α′
, (2.8)

where f0, h3, f
1
4 , f2

4 , f3
4 ∈ Z; z1 = x1 + ix2, . . . and

γi = 4π2α′ 2
3
√

3

√

5|f1
4 f2

4f3
4 |

|f0|
1

|f i
4|

. (2.9)
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The tadpole cancellation condition for F2 reduces to f0h3 = −2. Notice that we defined the

R-R fluxes following the conventions of [10] instead of those in [1] (see footnote 3 in [1] v3).

The non-compact part of the metric, ds2
AdS4

, is a 4-dimensional AdS4 space with radius (in

string frame),

R2
AdS = 4π2α′ 16

√

53|f1
4 f2

4 f3
4 |

33|f0|3|h3|4
. (2.10)

The volume of the compact manifold is computed to be

vol6 =
1

8
√

3
γ1γ2γ3 (2.11)

= (4π2α′)3

√

53|f1
4 f2

4 f3
4 |

33|f0|3
, (2.12)

where the factor
1

8
√

3
=

(

1

91/6

)3( √
3

91/62

)3

, (2.13)

comes from the discrete identifications in the compact manifold. The four dimensional

Planck length then becomes:

lP (4) =
1√
16π

(

vol6
2κ2

10e
2ϕ

)−1/2

(2.14)

= |h3|
√

33α′

275

|f0|
|f1

4 f2
4 f3

4 |
, (2.15)

where we used the convention 2κ2
10 = (2π)7α′4.

2.2 The orientifold in the DeWolfe et al. background

The orientifold, constructed by modding out by Ωp(−1)FLσ, lies on

x1 = x3 = x5 = 0 . (2.16)

Taking into account the identifications under Z3×Z3, we get the three dimensional surface

along which the orientifold is extended in the compact space. In figure 1, this surface is

pictured in the fundamental region of one of the tori of T 2 × T 2 × T 2. The orientifold also

fills the non-compact space.

The 3-cycle that is invariant under Z2 × Z3 × Z3, is the cycle on which the orientifold

is wrapped. This cycle α0, is determined by its Poincaré dual 3-form,

O6 : α0−cycle (2.17)

:
4
√

3
√

2 (dx1 ∧ dx3 ∧ dx5 − dx2 ∧ dx4 ∧ dx5

− dx1 ∧ dx4 ∧ dx6 − dx2 ∧ dx3 ∧ dx6) (2.18)

= β0 . (2.19)
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Z3

Z3

Z2

Z2

x1

x2

Figure 1: The z1-plane of T 6 with the actions of the non-free Z3 and the orientifolding Z2 indicated.

The O6-plane is pictured in thicker, dashed lines.

2.3 Remark on the F2-flux

The Bianchi identity for the massive type IIA solution reads:

dF2 = F0H3 + 2κ2
10µpδO6 6= 0 , (2.20)

where µp = −2
√

πκ−1
10 (4π2α′)−3/2, is the charge of the orientifold. Equation (2.7),

F2 = 0 (2.21)

should thus be seen as an approximation to the exact solution.

2.4 Scaling behavior

The integer parameters f1
4 , f2

4 and f3
4 are not constrained by any tadpole condition, but

we need to take each f i
4 6= 0, to have a non-degenerate solution (see (2.9)).

We will be interested in the regime

f1
4 = f2

4 = f3
4 = N , (2.22)

where we take N → ∞. The parameters characterizing the compactification scale as:

lP (4) ∼ N− 3

2

√
α′ (2.23)

RAdS ∼ N
9

4 lP (4) (2.24)

RKK ∼ N
7

4 lP (4) (2.25)

gs ∼ N− 3

4 , (2.26)

– 6 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
8

where RKK = 6
√

vol6 is a measure for the size of the compact manifold. We see that the

string coupling gs is small, while the radii characterizing the solution are large. In addition,

we notice that the background remains effectively four dimensional since the AdS radius

grows faster than the Kaluza Klein radius.

Let us now consider the regime where:

f1
4 = N, f2

4 = f3
4 = O(1) , (2.27)

which results in,

lP (4) ∼ N− 1

2

√
α′ (2.28)

RAdS ∼ N
3

4 lP (4) (2.29)

RKK ∼ N
7

12 lP (4) (2.30)

gs ∼ N− 1

4 . (2.31)

However in this regime, γ1 (see eq. (2.9)) shrinks to zero, indicating that (massive) type

IIA is not the correct description for this case. The above scalings might thus not hold in

this scaling limit.

3. Approximate double T-duality

The DeWolfe et al. model is formulated in massive type IIA SUGRA. This theory does not

have a perturbative world sheet expansion and quantization of the F0 is problematic. The

second difficulty is that the model also contains an orientifold which is a singular object

when described in type IIA SUGRA [11]. To study the model, we will first apply two

T-dualities, ignoring back reaction of the orientifold. These will bring us to non-massive

type IIA. We will address the second problem by inserting the orientifold in the dualized

configuration. The T-duality transformations have the additional benefit that the H3 flux

vanishes. The original H3 flux turns into a geometric flux showing up as twists in the

metric.

3.1 Approximate character of the T-dualities

Let us first point out that applying a double T-duality on a configuration with fluxes

results in general in a non-geometric compactification [12]. However, the T-dualities we

will perform are chosen such that we do not violate the condition ensuring that we remain

in the domain of geometric compactification [13].

We will first perform a T-duality on the x1-direction, followed by a T-duality in the

x2-direction. The T-duality transformations will only be valid in an approximate sense:

• The loops on the T 6 defined by the x1 and x2-directions are contractible on the fixed

points of the Z2 × Z3 × Z3 identifications. We thus do not have an S1-isometry

required for an exact T-duality.

– 7 –
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• In addition, we will work in the approximation where F2 = 0. As discussed in

section 2.3, this flux does not satisfy the Bianchi condition. We thus expect that the

Bianchi identity after T-dualities will not be satisfied either. The F2 flux is sourced

by the orientifold and by the flux term F0H3. In the T-duality computation we will

keep track of the fluxes F0, H3 and the cycle on which the orientifold is wrapped.

This information will be helpful to correct the T-dualized solution.

• Notice that we can expect the correct F2 in the original setup to depend on all

coordinates xi, since we expect that close to the orientifold the F2 flux resembles the

F2 flux of an orientifold in flat space. Because of the identifications the orientifold is

extended along all coordinate directions (see figure 1). This implies that the F2 flux

breaks the S1-isometry in the coordinate directions. Thus, if we would include the

back reaction of the orientifold, which sources the F2-flux, we would not be able to

T-dualize.

There are two related ways to view our approximate T-dualities. So far we have

emphasized the first, which is the interpretation of T-duality mapping solutions of Type

IIA supergravity into other solutions. In our case it takes solutions of massive Type IIA

into solutions of ordinary Type IIA, because the duality eliminates the F0 flux. This duality

is only approximate and in order to perform it we must ignore the orientifold (or at least

its back reaction).

Alternatively, we can start from the orbifold conformal field theory of DeWolfe et al.

Turning on fluxes corresponds to deformations of the background in the direction of certain

vertex operators, and the orientifold corresponds to modding out the CFT by one of its

symmetry operations. We can perform an exact T-duality on the CFT (just a change of

variables) and try to understand which vertex operators must be turned on in the T-dual

language.3 Similarly we can mod out by the T-dual symmetry operation. The result of

this operation is a CFT just as mysterious as the one, one might have tried to write down

in the original picture. However to leading order in the string tension expansion, it leads

to a new set of equations of motion, to which we may try to find a solution. The reader

may choose whichever interpretation of our procedure (s)he finds most convincing. We do

not pretend that we have presented a rigorous argument for either approach.

At any rate, as a consequence of the approximations, we can expect the solution after

T-dualities to contain inconsistencies. By imposing the equations of motion, the Bianchi

conditions and supersymmetry conditions on the dualized configuration, we hope to find a

tractable version of the DeWolfe et al. solutions, with a well defined large N expansion.

3.2 Orientifold projection in a twisted torus

The H3-flux in the DeWolfe et al. paper leads to twisting in the geometry after T-duality.

In this section we study how an orientifold fixed plane behaves under T-duality when a

non-trivial H3-flux background is turned on.

3The real problem here is that since fluxes are discrete, the sought for CFT is not a small perturbation

of the original orbifold.
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Since the H3-flux (2.2) and the orientifold (2.17), have several components along dif-

ferent xi-directions, we get several twisting terms in the metric after T-duality in the xi

coordinate system. The T-duality action allows us to break this problem in several smaller

problems by focusing on one term in the orientifold and one term of the H3-flux. Let us

work out the case where we focus on the term

H3 ∼ dx1 ∧ dx4 ∧ dx6 + . . . (3.1)

and where the orientifold fixed plane is wrapped on the compact 3-cycle

O6 : dx1 ∧ dx3 ∧ dx5 + . . . (3.2)

in the Calabi-Yau manifold. Let us rename and rescale, x1, x4, x6 as θ, Y, Z. We can now

focus on the 3-torus T 3 with H3-flux [13]:

ds2
3 = dθ2 + dY 2 + dZ2 (3.3)

H3 = dθ ∧ dY ∧ dZ , (3.4)

where we take θ, Y and Z to have periodicities 2π. The location of the orientifold in this

T 3 subspace of the compact manifold is determined by the fixed plane of the symmetry,

θ → −θ (3.5)

Y → Y (3.6)

Z → Z . (3.7)

The bosonic part of the worldsheet action which encodes the dynamics on the T 3 is

given by (d2z = dσ1dσ2):

S =
1

2πα′

∫

d2z{∂θ∂̄θ + ∂Y ∂̄Y + ∂Z∂̄Z + Y ∂θ∂̄Z − Y ∂Z∂̄θ} . (3.8)

This action is invariant under the periodic identifications of the target space coordinates

since the periodic identification, Y → Y + 2π, only contributes a total derivative. The

action is also invariant under the discrete orientifold symmetry σΩθ:

θ(z, z̄) → −θ(z̄, z) (3.9)

Y (z, z̄) → Y (z̄, z) (3.10)

Z(z, z̄) → Z(z̄, z) . (3.11)

Now we can perform a T-duality in the θ-direction by gauging the U(1)-isometry along

that direction [14]. The new action reads,

S =
1

2πα′

∫

d2z{(∂θ + A)(∂̄θ + Ā) + ∂Y ∂̄Y + ∂Z∂̄Z (3.12)

+ Y (∂θ + A)∂̄Z − Y ∂Z(∂̄θ + Ā) + θ̃F} , (3.13)

with F = ∂Ā − ∂̄A. The field θ̃, is a Lagrange multiplier with period 2π. Integrating out

θ̃ gives the original action.

– 9 –
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The new action is only invariant under the periodicity Y → Y + 2π, if we take θ̃ →
θ̃ − 2πZ, simultaneously. We can also extend the action of the orientifold symmetry by

requiring that the new action is invariant under the extended orientifold symmetry. The

orientifold symmetry, σΩθ, becomes:

θ(z, z̄) → −θ(z̄, z) Y (z, z̄) → Y (z̄, z) (3.14)

A(z, z̄) → −A(z̄, z) Z(z, z̄) → Z(z̄, z) (3.15)

Ā(z, z̄) → −Ā(z̄, z) F (z, z̄) → F (z̄, z) (3.16)

θ̃(z, z̄) → θ̃(z̄, z) . (3.17)

Fixing the gauge with the condition θ = 0 and integrating out the fields A and Ā gives the

dual action:

S =
1

2πα′

∫

d2z{(∂θ̃ + Y ∂Z)(∂̄θ̃ + Y ∂̄Z) + ∂Y ∂̄Y + ∂Z∂̄Z} . (3.18)

Translating this to the target space gives,

ds2
3 = (dθ̃ + Y dZ)2 + dY 2 + dZ2 (3.19)

H3 = 0 , (3.20)

with the identifications,

θ̃ → θ̃ + 2π (3.21)

Y → Y + 2π and θ̃ → θ̃ − 2πZ (3.22)

Z → Z + 2π . (3.23)

The metric is thus a circle bundle over a torus. The non-trivial identifications indicate that

the coordinate θ̃, along the fibre is not globally well-defined. Let us introduce the one form

Θ, which is globally defined by dΘ = dY ∧ dZ and gives locally Θ = dθ̃ +Y dZ. The action

of the orientifold symmetry now reads:

Θ → Θ (3.24)

Y → Y (3.25)

Z → Z . (3.26)

This is, for the example we considered, the orientifold wraps both the fibre and the torus

base space after T-duality. The Poincaré dual form of the cycle on which the orientifold is

wrapped becomes:

O7 : dx3 ∧ dx5 + . . . . (3.27)

We can repeat this exercise for different combinations of terms in the H3-flux and

orientifold cycle. We find that the orientifold either wraps the fibre of the twisted torus,

Θ → Θ, or reflects the fibre Θ → −Θ. In the T-duality computation of the DeWolfe et

al. solution, we will follow the orientifold by keeping track of the Poincaré dual form of

the cycle on which the orientifold is wrapped. The above discussion shows that this is a

consistent treatment of the orientifold.

– 10 –
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3.3 Doubly dualized background

In appendix A, we review the action of T-duality on a background of SUGRA. In ap-

pendix B, we work out the double T-duality transformation of the DeWolfe et al. model.

The result reads:

ds2 =
4π2α′

γ1

(

9
2

3 Θ2
1 + 42 3−

2

3 Θ2
2

)

+ γ2(dx2
3 + dx2

4) + γ3(dx2
5 + dx2

6)

+ ds2
AdS4

(3.28)

H3 = 0 (3.29)

eϕ =
1

4
|h3| 4

√

335

|f0f1
4f2

4 f3
4 |

(3.30)

F4 = 4(2π
√

α′)3
3
√

3f1
4

1

γ2γ3
vol4 (3.31)

F2 = −4(2π
√

α′)3
3
√

3

γ1
(f2

4 dx5 ∧ dx6 + f3
4 dx3 ∧ dx4)

+ f0
2π

√
α′

γ1
4 · 3 1

3 Θ1 ∧ Θ2 (3.32)

F0 = 0 (3.33)

1

2κ2
10Ã

=
1

2κ2
10A

γ2
1

(4π2α′)2 4 · 3 1

3

(3.34)

Θ1 = 2π
√

α′dx1 + 2π
√

α′h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) (3.35)

Θ2 = 2π
√

α′dx2 + 2π
√

α′h3

4
√

3
√

2

4 · 3− 1

3

(−x3dx6 − x4dx5) , (3.36)

where x1 ∈ [0, 9−1/6] and x2 ∈ [0, 2−1 31/6].

The original orientifold splits into an O5- and O7-plane after the first T-duality (see

appendix B). The second T-duality recombines those two orientifold planes to give an

O6-plane wrapped on the Poincaré dual of the α̃0-cycle:

O6 :
4
√

3
√

2

(

+
2 · 3− 1

6 Θ2

2π
√

α′ 9
1

6

∧ (dx3 ∧ dx5 − dx4 ∧ dx6) (3.37)

+
9

1

6 Θ1

2π
√

α′ 2 · 3− 1

6

∧ (dx4 ∧ dx5 + dx3 ∧ dx6)

)

= β̃0 . (3.38)

4. The Bianchi identity after the double T-duality

As mentioned earlier, we expect the dualized solution (3.28)–(3.36) to contain inconsisten-

cies. We will do the full analysis of the consistency conditions later. Here we will focus on
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the Bianchi condition. Taking the F2 flux from the dualized solution we compute:

dF2 = f0
2π

√
α′

γ1
4 · 3 1

3 (dΘ1 ∧ Θ2 − Θ1 ∧ dΘ2) (4.1)

= f0h3
(2π

√
α′)3

γ1
2 · 3 1

6 β̃0 . (4.2)

This 3-form is everywhere non-zero.

On the other hand, since the configuration after T-dualities is a solution of massless

type IIA string theory, with the orientifold as only source for F2, we expect the Bianchi

identity to read:
1

2κ2
10Ã

dF2 = µ6δO6 = µ6δ(β̃0) . (4.3)

The distributional 3-form dF2, is thus localized on the orientifold plane, which lies on the

Poincaré dual of the 3-form β̃0. This is clearly at odds with (4.2). This inconsistency was

not unexpected as mentioned earlier.

We will now modify the dualized background such that it satisfies the Bianchi condi-

tion. From equation (4.3) we get:

dF2 = −2
(2π

√
α′)3

γ1
2 · 3 1

6 δ(β̃0) . (4.4)

Integration over the β̃0-cycle gives,

∫

β̃0

dF2 =

∫

vol6

dF2 ∧ ∗6β̃0 = −2
(2π

√
α′)3

γ1
2 · 3 1

6 , (4.5)

or, after partial integration,

2 · 3 1

6

γ1

(2π
√

α′)3
h3

∫

vol6

F2 ∧ (dx3 ∧ dx4 ∧ dx5 ∧ dx6) = −2 . (4.6)

In the original DeWolfe et al. solution, the flux from the orientifold was absorbed by

the F0H3 term in the Bianchi identity. This leads to the constraint f0h3 = −2. The above

derivation shows how the twisted geometry, with the non-closed 3-form ∗6β̃0, absorbs the

orientifold flux without the F0H3 flux term.

The integrated Bianchi condition also gives us some information on the correct F2 flux.

It should contain a (distributional) term proportional to f0Θ1 ∧Θ2. We also learn that as

N → ∞, the F2 flux has to decrease. From now on we will ignore the term,

f0
2π

√
α′

γ1
4 · 3 1

3 Θ1 ∧ Θ2 , (4.7)

in (3.32). Instead we will include a term F2, O6 which satisfies (4.4).
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5. Lift to M-theory

5.1 Entropy computation and motivation for an M-theory interpretation

Let us return to the original DeWolfe et al. solution. It is supposed to be an AdS4 space-

time, Maldacena dual to a 2 + 1 dimensional CFT. Following [15] we can calculate the

entropy of this system,

SBH =
AEinst

horizon

4G4d
N

(5.1)

= π (2MRAdS)
2

3

(

160 · 2 7

8 3
3

4 5
1

4 π

27

1

|f0|
5

4 |h3|2
|f1

4 f2
4 f3

4 |
3

4

)
2

3

, (5.2)

where M is the mass of the black hole.

Let us now consider the different scalings of the four form flux as discussed in sec-

tion 2.4. For the regime f1
4 = f2

4 = f3
4 = N , we find that

SBH ∼ N
3

2 . (5.3)

This gives us the entropy as a function of the energy of the black hole. Using standard

CFT thermodynamics, this implies a scaling

SBH ∼ N
9

2 . (5.4)

as a function of the temperature.4 We do not know of a conformal field theory with this

kind of scaling.

If we take the other scaling regime where f1
4 ∼ N , while the other two four form fluxes

are held fixed, then we find an entropy scaling like N3/2 at fixed temperature, in the large

N limit. We know that the entropy of the CFT describing a stack of N M2-branes scales

in precisely this manner [17]. This computation thus seems to indicate that we should look

for an M-theory interpretation of the special cases of the DeWolfe et al. background, with

one large four form flux and the others of order one. We note that repeating the entropy

computation in the doubly dualized background gives exactly the same answer as (5.2).

Indeed, we found that in our double T-dual solution, there was four form flux in the

AdS4 directions, corresponding to of order N D2-branes at the end of the universe. Note

that this flux comes only from f1
4 , the flux we have chosen to be large in order to get M2-

branes entropy scaling. Our entropy calculation suggests that these D-branes are behaving

like M2-branes. This could be explained, if the IIA string coupling on the compact manifold

is strong in the region where the M2-branes are localized.

There is a second reason indicating that we should look for an M-theory setting of

the problem. The orientifold is a singular object in 10D SUGRA. The M-theory lift of an

orientifold in flat space is the Atiyah-Hitchin manifold [18, 19]. In 11 dimensions, we have

thus a non-singular, completely geometric description. The orientifold is singular in the

Type IIA limit, because the string coupling is always large in the core of the Atiyah-Hitchin

4This computation was done independently in [16]
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manifold, no matter what its value is at infinity. Since the orientifold locus includes the

AdS4 directions, the D2-branes in our T-dual configuration are sitting in a strong coupling

region. This explains why they behave like M2-branes.

Such a picture is inconsistent with a weak coupling string theory interpretation of the

DeWolfe et al. configurations, with only one large flux. We note that these observations

are valid in the region where f1
4 is large, and the other two four form fluxes are non-

zero, and may be large or small. DeWolfe et al. only claimed to have a weakly coupled

four dimensional compactification in the region where all fluxes are large. In our T-dual

picture, even this regime has a large number of branes sitting near the orientifold. Our next

thought was that there might be an M-theory interpretation with N M2-branes embedded

in a smooth manifold. We will see that this is possible only for a single large flux with

the other fluxes fixed and non-zero. Although the calculations of DeWolfe et al. still

indicate a weakly coupled four dimensional compactification in this limit, certain cycles

of the compact manifold shrink to zero for large N . These authors do not claim to have

control over the regime that we claim has a smooth M-theory limit with comparable AdS4

and M7 radii.

5.2 Lift to M-theory

Given a massive type IIA solution (without H3 flux), C. M. Hull constructed a procedure

to lift the solution to M-theory [20]. This process consists roughly of a T-duality to type

IIB and then a lift via F-theory to M-theory.5 As discussed earlier, if we T-dualize the

DeWolfe et al. background once, some H3 flux remains which complicates the lift to M-

theory. Therefore, we will follow the slightly different track of T-dualizing twice and then

using the strong-weak correspondence between type IIA string theory and M-theory to lift

the configuration to 11D [21].

In the 10D theories the orientifold is a singular object which we included by keeping

track of the cycle on which it was wrapped and via its source term in the Bianchi identity.

As mentioned earlier, in M-theory this singular object translates into a non-singular geo-

metric object. Its explicit form is only known in the case of an orientifold in flat space [23].

Our strategy will be to first construct a naive lift ignoring the orientifold. Appendix C

reviews the formulas to lift a non-singular type IIA SUGRA background to M-theory.

However, omitting the orientifold will introduce inconsistencies. In a second step, we will

impose the consistency conditions and try to modify the naive lift.

Constructing the naive lift to M-theory of the dualized background gives, with LM =

5There are complications on the quantum level with this construction [22]. Our analysis has been on

the classical level.
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2π
κ
10Ã√

π(2π
√

α′)3
:

ds2 = R2
MΘ2

M + γ̃11Θ
2
1 + γ̃12Θ

2
2 + γ̃2(dx2

3 + dx2
4) + γ̃3(dx2

5 + dx2
6) + ds2

AdS4
(5.5)

G4 = 6m vol4 (5.6)

Θ1 = dx1 + h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) (5.7)

Θ2 = dx2 + h3

4
√

3
√

2

4 · 3− 1

3

(−x3dx6 − x4dx5) (5.8)

ΘM = dxM + A1 (5.9)

dA1 = −2 · 3 1

6 (f2
4 dx5 ∧ dx6 + f3

4dx3 ∧ dx4) + F̃2, O6 (5.10)

1

2κ2
11M

=
1

16πl9P11

=
1

2κ2
10A

γ2
1

(4π2α′)2 4 · 3 1

3

1

LM
. (5.11)

where F̃2, O6 = F2, O6/LM and with

RM =
3

5

6 π
2

9

2
7

9 5
1

6

|f0h
4
3|

1

6

|f1
4 |

1

6

|f2
4 f3

4 |
1

2

lP11 (5.12)

γ̃11 =
2 · 2 4

9 3
5

6 π
4

9

5
1

3

|f0|
1

3

|h3|
2

3

|f1
4 |

1

3 l2P11 (5.13)

γ̃12 =
32 · 2 4

9 3
5

6 π
4

9

9 · 5 1

3

|f0|
1

3

|h3|
2

3

|f1
4 |

1

3 l2P11 (5.14)

γ̃2 =
8 · 2 4

9 3
5

6 5
2

3 π
4

9

9

1

|f0h3|
2

3

|f1
4 |

1

3 f3
4 l2P11 (5.15)

γ̃3 =
8 · 2 4

9 3
5

6 5
2

3 π
4

9

9

1

|f0h3|
2

3

|f1
4 |

1

3 f2
4 l2P11 (5.16)

RAdS =
8 · 2 2

9 3
5

6 5
5

6 π
2

9

9

1

|f0|
5

6 |h3|
4

3

|f1
4 |

1

6 |f2
4 f3

4 |
1

2 lP11 (5.17)

m =
2

7

9 3
7

6 5
1

6

160π
2

9

|f0|
5

6 |h3|
4

3

f1
4

|f1
4 |

7

6 |f2
4f3

4 |
1

2

1

lP11
. (5.18)

Notice that we also rescaled Θ1,Θ2 by 1/(2π
√

α′) as compared to the previous sections.

6. Discussion of the naive M-theory lift

6.1 Condition on F2, O6

The term LM F̃2, O6 = F2, O6 in (5.10) has to satisfy the Bianchi identity (4.4). Integration

as in (4.6) leads to the condition

4 · 3 1

3 h3

∫

vol6

F̃2, 06 ∧ (dx3 ∧ dx4 ∧ dx5 ∧ dx6) = −2 . (6.1)

As discussed earlier, this constraint should lead to f0h3 = −2.

– 15 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
8

6.2 Volume of the compact manifold

The volume of the compact 7 dimensional manifold is

vol7 =
64 · 2 5

9 3
5

6 5
5

6 π
14

9

27

1

|f0|
5

6 |h3|
4

3

|f1
4 |

7

6 |f2
4 f3

4 |
1

2 l7P11 . (6.2)

The Kaluza-Klein radius becomes

RKK = 7
√

vol7 (6.3)

=
2

59

63 3
29

42 5
5

42 π
2

9

3

1

|f0|
5

42 |h3|
4

21

|f1
4 |

1

6 |f2
4 f3

4 |
1

14 lP11 . (6.4)

6.3 The entropy

Let us express the entropy as a function of the energy of the black hole as in (5.2). The

scaling part of the entropy of the configuration is given by,

SBH ∼
(

RAdS

lP4

)
2

3

(6.5)

∼
(

160 · 2 7

8 3
3

4 5
1

4 π

27

1

|f0|
5

4 |h3|2
|f1

4 f2
4 f3

4 |
3

4

)
2

3

. (6.6)

Comparing this to the scaling part of the entropy in the original setup (see equation (5.2)),

we see that they match perfectly.

6.4 Scaling behavior

In the regime f1
4 = f2

4 = f3
4 = N , the various parameters of the background scale as,

RM ∼ N− 5

6 lP11 (6.7)

RAdS ∼ N
7

6 lP11 (6.8)

vol7 ∼ N
13

6 l7P11 (6.9)

RKK ∼ N
13

42 lP11 (6.10)

m ∼ N− 7

6 l−1
P11 (6.11)

SBH ∼ N
3

2 , (6.12)

where we express the scaling of the entropy as a function of the energy as in (5.2). We see

that just as the original DeWolfe et al. solution, the M-theory configuration is effectively

4 dimensional, since RAdS grows faster with N than RKK. Note that the same analysis on

the doubly dualized type IIA background teaches us that background is also effectively 4

dimensional in this particular scaling regime. The radii characterizing the solution grow

as N increases, except the M-theory radius RM , which decreases with growing N . We will

discuss this property below.
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Taking a look at the other scaling f1
4 = N, f2

4 = f3
4 = O(1), we get,

RM ∼ N
1

6 lP11 (6.13)

RAdS ∼ N
1

6 lP11 (6.14)

vol7 ∼ N
7

6 l7P11 (6.15)

RKK ∼ N
1

6 lP11 (6.16)

m ∼ N− 1

6 l−1
P11 (6.17)

SBH ∼ N
1

2 . (6.18)

Here we conclude that the AdS and the compact manifold grow at the same rate such

that the compactification is not effectively four dimensional. On the other hand, in this

case all the radii of the 11 dimensional solution grow with N making 11D SUGRA a valid

approximation for large N . As previously mentioned, the scaling of the entropy as function

of the temperature in this regime is N3/2.

6.5 Checking the consistency conditions

6.5.1 M-theory equations of motion

From (C.1), we get the equation of motion for the metric:

RicMN =
2

4!

(

GMPQR G PQR
N − 1

12
gMN GPQRS GPQRS

)

. (6.19)

Taking the indices M , N in the AdS space, this condition reduces to:

1

R2
AdS

= 4m2 . (6.20)

This condition is satisfied as we can verify from (5.18).

The equation of motion for the compact part of the metric, g
(7)
mn, becomes:

Ricmn = 6m2g(7)
mn . (6.21)

This implies that the compact 7-manifold is an Einstein manifold. As is common in

similar cases, this condition will be satisfied if the supersymmetry condition is satisfied.

We can verify that the equation of motion and Bianchi condition on G4,

d ∗ G4 +
1

2
G4 ∧ G4 = 0 (6.22)

dG4 = 0 , (6.23)

are satisfied.

6.5.2 Supersymmetry conditions

The original background was an N = 1 compactification in four dimensions. From [24], we

learn that the supersymmetry requirement on the M-theory lift, AdS4 × M7, is that M7
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has weak G2 holonomy. Weak G2 holonomy of a 7-manifold is defined by the condition

that there exists a 3-form φ3 and a real number m such that,

dφ3 = 4m ∗7 φ3 . (6.24)

From this condition one can derive the equation of motion (6.21) [25]. We conclude that if

the supersymmetry conditions are obeyed then the naive M-theory lift is fully consistent.

When N → ∞, m → 0 and the supersymmetry condition on the compact manifold

simplifies to G2 holonomy:

dφ3 = 0 (6.25)

d ∗7 φ3 = 0 . (6.26)

The 4 dimensional analysis in [1] led to stricter conditions on the signs of the F4 flux

parameters f1
4 , f2

4 and f3
4 :6

sign(f0f
1
4 f2

4 f3
4 ) < 0 (6.27)

sign(f1
4 ) = sign(f2

4 ) = sign(f3
4 ) . (6.28)

Backgrounds violating the above condition are believed to be stable but non-super-

symmetric solutions [1]. We can thus expect that the above conditions will follow from the

weak G2 holonomy condition.

If we check the weak G2 holonomy condition for the naive lift, we find that it does

not satisfy the conditions. We included the implicitly determined flux F̃2, O6 which is

sourced by the orientifold, while we did not include the Atiyah-Hitchin like geometry from

the orientifold. As the coupling constant flows from type IIA to M-theory, we expect the

singular orientifold to get some thickness, modifying the geometry in the region close to the

orientifold. We thus expect that the naive lift is only an approximation for the geometry

far away from the orientifold.

We did not succeed in finding an explicit solution to (6.24) in the regime where f1
4 =

N, f2
4 = f3

4 = O(1), but neither have we found any obstruction to the existence of a metric

of weak G2 holonomy with the scaling properties and behavior near the M2-brane locus

that we were led to. We believe that in the limit of a single large flux there is a systematic

M-theory expansion. The background is AdS4 × M7, with M7 a manifold of weak G2

holonomy. The anti de Sitter and M7 radii are comparable. For other configurations of

large flux we believe that the M-theory picture is only valid locally, in the vicinity of the

orientifold, but that this region is large and cannot be ignored for large N . The string

coupling does go to zero over another large region of the manifold.

6.6 Interpretation as a stack of M2-branes

The entropy argument of section 5.1 indicated that for a certain flux configuration we could

expect the DeWolfe et al. solution to be the near horizon of a stack of M2-branes. The

6Equation (6.28) follows from the Kähler cone conditions for the background. There are additional

Kähler cone conditions for the blow ups of the singularities. We do not consider those conditions here since

our strategy was to ignore the singularities in the first step.

– 18 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
8

AdS4 × M7 background with a weak G2 holonomy condition on M7, as discussed in the

previous section, is in [24] indeed interpreted as the near horizon limit of M2-branes.

The background of a stack of N M2-branes at the tip of a cone, is given by

ds2 = H− 2

3 ds2
3 + H

1

3 ds2
8 (6.29)

G4 = vol3 ∧ dH−1 , (6.30)

with ds2
3 and vol3 the Minkowski metric and worldvolume of the M2-branes and ds2

8 =

du2 + u2ds2
7 the metric of the cone in the directions transverse to the M2-branes. The

function H is given by

H = 1 +
a6

u6
, (6.31)

and a is determined by the number of M2-branes [26]:

a6 = N
κ2

11MT3

3Ω7
= N

κ2
11M

3a−7vol7

(

4π2

2κ2
11M

)

1

3

, (6.32)

with vol7 the volume form on ds2
7. The near horizon limit of this background becomes

(after a coordinate transformation r = 2u2/a):

ds2 =
r2

4a2
(−dt2 + dy2

1 + dy2
2) +

a2

4r2
dr2 + a2ds2

7 (6.33)

G4 =
6

a
vol4 , (6.34)

where vol4 is the volume form on the AdS4 space which has RAdS = a/2. Comparing

this to the M-theory lift of the DeWolfe et al. solution (5.5), we find that m = 1/a and

using (6.32), we compute that the number of M2-branes is given by:

N = |f1
4 | . (6.35)

We know that the entropy (as a function of energy) of the CFT corresponding to a stack

of M2-branes scales as N1/2 = |f1
4 |1/2. We can compare this to the scaling of the entropy

of the M-theory lift (6.6), |f1
4 f2

4 f3
4 |

1

2 . In the regime where f1
4 = N , f2

4 = f3
4 = O(1), the

scaling of the entropy is exactly the same. We can thus interpret the M-theory lift of the

DeWolfe et al. solution in that regime as a stack of N M2-branes at the tip of a cone. We

do not have a deep understanding of the more generic regime, where all four form fluxes

are large, nor the regime where two are large and one is small. We note again that De

Wolfe et al. only claimed to have a systematic weak coupling and low energy expansion

when all fluxes are large.

6.7 Validity of 11 dimensional supergravity in the generic regime

Let us consider the regime f1
4 = f2

4 = f3
4 = N . The M-theory radius of the naive lift (6.7)

decreases as N grows, indicating that the 11 dimensional supergravity approximation can-

not be trusted, since the curvature of the background becomes too large and corrections to

11D SUGRA will be important. We find that N < 3 for RM > lP11. However, we also see
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that we need N > 1 for
√

γ̃11 > lP11. We see that supergravity is only valid in a certain

small range of values for N .

The above reasoning is entirely based on our naive lift. Including the orientifold in

the geometry changes the situation close to the orientifold. For an orientifold embedded

in flat space, the dilaton increases the closer you get to the orientifold. This corresponds

to a larger M-theory radius RM . We can expect the same behavior in our configuration:

including the correct geometry coming from the orientifold will give an M-theory radius

which is larger than our naive estimate.

The geometry of the 11D SUGRA solution that incorporates the orientifold, can

be thought of as an interpolation between the region close to the orientifold (bolt-

geometry) [23] and the region far away from the orientifold (naive lift). The twisted tori

in the region away from the orientifold come from the F0H3 term in the original Bianchi

identity, while (part of) the twist in the M-theory direction corresponds to the F2 flux

sourced by the orientifold.

Let us now focus on large N . The size of the compact manifold is large, so there

are points located far away from the orientifold. We expect this region far away from

the orientifold to resemble our naive lift. Further yet from the orientifold we enter into

a weak coupling region. This is the region where the original argument of DeWolfe et al.

operates. In the large flux limit there is a large region where it fails. To see this, note that

our T-dual Type IIA configuration has a flux in the AdS4 directions, consistent with N

D2-branes lying in the orientifold locus. The dilaton in such a D2-brane background has

the form

eϕ =

(

1 +
c2gsNl5s

r5

)1/4

, (6.36)

with c2 a numerical constant. Plugging in the DeWolfe et al. value for the coupling at

infinity, we find that the coupling gets large at a distance of order N1/20ls from the stack

of D2-branes. Thus, the weak coupling approximation breaks down over a parametrically

large region of the manifold as N → ∞.

If we make the plausible assumption that an 11D description is valid near the orien-

tifold, we find that the local radius of curvature in the presence of the branes is of order

the AdS radius. We connect the weak coupling geometry to a seven dimensional patch

whose size is of order N1/20ls ∼ N13/60lP11 (see figure 2), and whose geometry is that of

the manifold of weak G2 holonomy we described above. The radius of curvature of that

geometry is of order the AdS radius, and thus, much larger than the size of the patch.

There now seem to be two possibilities for a geometrical description of what is going on in

the large N limit.7 In the first, the patch is essentially flat (see figure 2a). Alternatively,

the whole geometry could mushroom out to a large seven dimensional patch with weak G2

holonomy and size of order the AdS radius (see figure 2b). We believe that neither the

methods of DeWolfe et al. nor our own, are powerful enough to distinguish between these

7We emphasize that since we have no complete approximation scheme for this regime, there is no

argument that any geometrical picture is valid.
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a.

b.

N1/20ls

R11d
KK

R10d
KK

R10d
KK

N1/20ls

Figure 2: Two possible scenarios. The right hand side of each drawing represents the region where

(massive) type IIA is the correct description and where the radius of curvature of the compact

manifold, R10d
KK

, scales with N at a slower rate than RAdS. The left hand side is the region close

to the D2/orientifold locus (indicated with the dot). This region has a size that scales as N1/20ls.

The compact manifold radii in this region, R11d
KK

, scale as fast as RAdS scales with N , resulting in

a flat patch (case a) or a mushroom cap (case b).

two alternatives. In the second alternative there would be KK excitations with a mass of

order the inverse AdS radius, and the compactification would not be four dimensional.

7. Conclusions and speculation

We believe that we have provided ground for suspecting that the massive IIA description

of the DeWolfe et al. background does not provide a systematic low energy expansion due

to the back reaction of the orientifold. The doubly dualized description still has the same

problem. However, this low energy effective description has the advantage that the F0 and

H3 fluxes are absent.

Regime f1
4 = N , f2

4 = f3
4 = O(1): The scaling of the entropy indicates that there

might be a correct expansion using 11D SUGRA in this regime. We constructed a naive
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lift to 11 dimensions. We gave arguments that a 7-manifold of weak G2 holonomy exists

and that N M2-branes at an approximately Atiyah-Hitchin locus on this manifold might

give a description of the physics of these compactifications. We reiterate that this is not a

regime where DeWolfe et al. claimed to have a controlled expansion.

We thus claim that in the regime where f1
4 is large, and the other four form fluxes

are of order 1, there should be a valid 11D SUGRA approximation to the DeWolfe et al.

models. This would be the near horizon limit of the configuration of f1
4 M2-branes at

the tip of a cone over a seven manifold M7 of weak G2 holonomy. The linear size of M7

scales in the same way as the AdS4 radius. The exact description of this regime would

be a 2 + 1 dimensional CFT with fixed temperature entropy of order (f1
4 )3/2. It should

be possible to find it as the endpoint of the RG flow along a relevant perturbation of

the CFT of M2-branes in flat space, which breaks the symmetry down to minimal 2 + 1

dimensional SUSY. The supergravity solution would enable one to compute dimensions of

low dimension operators at this fixed point. However, since the SUSY algebra is so small,

there might not be any checks of these computations at the UV fixed point.

There is no sense in which this model is well approximated by weakly coupled string

theory. In addition, the compactification is not approximately four dimensional. The

AdS and M7 radii are comparable. If our picture is the correct one, the failure of the

weak coupling analysis should be attributed to the naive treatment of the orientifold.

In M-theory, the center of the orientifold is a locus of strong IIA coupling. In these

compactifications, for large f4
1 (in the T-duality frame we have chosen), a large number of

M2 branes sit at this locus, and their back reaction completely changes the weak coupling

geometrical picture. Of course, the limit of a single large flux was not controllable in the

picture of DeWolfe et al.. Nonetheless it is striking that a single shrinking cycle (from their

point of view) can actually lead to a completely different picture of the geometry, and of

the strength of the coupling.

Generic regime f1
4 = f2

4 = f3
4 = N : This regime is more mysterious. The fixed

temperature entropy of the CFT scales like N9/2. We would like to propose a heuristic

explanation of this scaling law, but we warn the reader that many aspects of this proposal

are obscure. Klebanov and Tseytlin proposed an explanation [27] of the N3 scaling of the

(2, 0) CFT that describes M5-branes, in terms of partially BPS states of membranes in

a pair of pants configuration with boundaries on three different 5-branes. We would like

to propose a similar explanation for the generic scaling of the entropy in the models of

DeWolfe et al. There are two important differences. First of all, we hypothesize multi-

layered pairs of pants (see figure 3 for an illustration). That is, each geometrical pair of

pants is wrapped by N M2-branes rather than a single one. Secondly, the M2-branes end

on Kaluza-Klein monopoles instead of on M5-branes. We claim that the entropy comes

from N3 copies of the M2-brane field theory, each with entropy N3/2.

The symmetry of the formulae under interchange of the three four form fluxes, suggests

that a picture based on string networks in Type IIB string theory might capture some of

the physics. Thus, we would imagine an Argentine bola string junction, with N allowed

sites for each of its ends. Each bola would consist of N strings. The M2-brane scaling of
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Figure 3: N M2-branes ending on 3 stacks of N Kaluza-Klein monopoles. Notice that each end

of the trousers is stitched together.

the world volume theory of the string junction, could be explained by hypothesizing that

it passed through a large volume on the compact manifold, where the M-theory torus had

large area. The endpoints of the bola would be better described in terms of weakly coupled

Type IIB string theory, though perhaps different ends would be weakly coupled in different

S-duality frames.

We have argued that the weak coupling expansion claimed by DeWolfe et al. in this

regime cannot be uniformly valid, since there is a region of size N1/20ls where the coupling

is not weak in the large N limit. Since there is no single low energy field theory that

describes these configurations, and since observables in theories of gravity in Anti-de Sitter

space are not local on the compact manifold, we are not sure how one would go about

making a systematic computation of these observables for large N .

We presented two heuristic geometrical pictures of how the weak coupling geometry

could connect on to a region best described in terms of 11D SUGRA on a manifold of

weak G2 holonomy. The approximate 4 dimensionality of the compactification is valid

only in one of them. The weak coupling analysis might be missing a large mushroom cap

region hidden near the strong coupling orientifold singularity. We believe that no extant

methods can distinguish between these two pictures, or provide a systematic description

of the physics of this system at large N . We have also presented a heuristic model of the
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entropy of the regime with all fluxes large. This model also depends on the existence of

large regions of the compact geometry which are weakly curved eleven manifolds.

Given these arguments, and the success of our 11D picture in the regime of a single

large flux where the weakly coupled region completely disappears, we see serious reasons

to doubt the validity of the simple weak coupling picture advocated by DeWolfe et al.,

even when all fluxes are large. The reason for this is the back reaction of a large number

of branes near the strongly coupled orientifold locus, which changes the geometry in ways

that cannot be understood from the perturbative picture.

In our opinion, the best one could hope for would be some analog of F-theory, in which

different string expansions governed local physics in different regions of the compact man-

ifold. It is entirely unclear to us whether the particular duality frame we have emphasized

is the best description of this regime. Furthermore, since we are working with a very small

amount of supersymmetry, it is unlikely that we can use non-renormalization theorems

to glean exact information about these compactifications from their geometrical formula-

tion. This is a pity, because it is the only one in which an approximately 4 dimensional

compactification might arise.

It would seem that the only way to really investigate the physics of these backgrounds

of string theory is to find and solve the dual 2 + 1 dimensional conformal field theory. For

the special flux configurations described above, it is plausible that this CFT can be found

by perturbing the Yang-Mills theory of D2-branes by an appropriate relevant operator,

obtaining the CFT dual to M2-branes at the tip of a cone over a manifold of weak G2

holonomy. We conjectured that the correct description of more general configurations

might be explained in terms of a tensor product of field theories, or some theory which

approximately reduced to such a tensor product for purposes of counting the large N

asymptotics of the entropy.
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A. Type IIA - Type IIB T-duality dictionary

We take the bosonic type IIA action in the string frame to be (omitting the Chern-Simons
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terms):

SIIA =
1

2κ2
10A

∫ √−g10Ae−2ϕA(R + 4∂ϕA∂ϕA) − 1

4κ2
10A

∫

e−2ϕAH3 ∧ ∗H3

− 1

4κ2
10A

∫

F4 ∧ ∗F4 + F2 ∧ ∗F2 + F0 ∧ ∗F0 , (A.1)

while the bosonic type IIB action is given by:

SIIB =
1

2κ2
10B

∫ √−g10Be−2ϕB (R + 4∂ϕB∂ϕB) − 1

4κ2
10B

∫

e−2ϕBH3 ∧ ∗H3

− 1

4κ2
10B

∫

1

2
F5 ∧ ∗F5 + F3 ∧ ∗F3 + F1 ∧ ∗F1 , (A.2)

where we impose the self-duality of F5 in the equations of motion by hand (see [28] for

a consistent treatment of self-dual field theories). The T-duality dictionary between both

theories for a warped metric reads [29],

ds2
A = L2

Ae2αφΘ2
A + e2βφds2

9 ↔ ds2
B = L−2

A e−2αφΘ2
B + e2βφds2

9

H3 = H̃3 + H̃2 ∧ ΘA ↔ H3 = H̃3 − F̃NS ∧ ΘB

ϕA ↔ ϕB = ϕA − αφ ,

F4 = F̃4 + F̃3 ∧ LAΘA ↔ F5 = e(α+β)φ ∗9 F̃4 + F̃4 ∧ L−1
A ΘB

F2 = F̃2 + F̃1 ∧ LAΘA ↔ F3 = F̃3 + F̃2 ∧ L−1
A ΘB

F0 = F̃0 ↔ F1 = F̃1 + F̃0 ∧ L−1
A ΘB

1
2κ2

10A

↔ 1
2κ2

10B

=
L2

A

2κ2

10A

,

dΘA = F̃NS ↔ dΘB = −H̃2 ,

ΘA = 2π
√

α′dx + ÃNS ↔ ΘB = 2π
√

α′dx − B̃1 ,

(A.3)

where the last line is valid locally, with F̃NS = dÃNS , H̃2 = dB̃1 and x ∈ [0, 1] parametrizes

the U(1) isometry. The Hodge star in F5 is with respect to the ds2
9 metric on the type IIB

side of the dictionary. In our notation, the forms on the right hand sides of the equations

never contain ΘA or ΘB explicitly.

B. Computing the double T-dual of the DeWolfe et al. background

We start from the DeWolfe et al. solution (2.1)–(2.8). We use the dictionary from ap-

pendix A. To apply a first T-duality in the x1-direction, x1 ∈ [0, 1], we take,

L2
A =

γ1

4π2α′ 9
− 1

3 (B.1)

ΘA = 2π
√

α′ 9
1

6 dx1 (B.2)

ΘB = 9
1

6 Θ1 (B.3)

α = β = 0 . (B.4)
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The factor 91/6 comes from the discrete symmetries Z3 × Z3 (see (2.13)). This results in:

ds2 =
4π2α′

γ1
9

2

3 Θ2
1 + γ1dx2

2 + γ2(dx2
3 + dx2

4) + γ3(dx2
5 + dx2

6) + ds2
AdS4

(B.5)

H3 = 4π2α′h3
4
√

3
√

2 (dx2 ∧ dx3 ∧ dx6 + dx2 ∧ dx4 ∧ dx5) (B.6)

eϕB =
1

4
|h3| 4

√

335

|f0f
1
4 f2

4f3
4 |

(B.7)

F5 = 4(2π
√

α′)3 3
√

3f1
4

(

∗9(dx3 ∧ dx4 ∧ dx5 ∧ dx6)

+

√

4π2α′ 9
2

3

γ1
dx3 ∧ dx4 ∧ dx5 ∧ dx6 ∧ Θ1

)

(B.8)

=

(

4(2π
√

α′)3
3
√

3f1
4

1

γ2γ3
vol4

)
√

γ1

4π2α′ 4 · 3− 1

3

∧ (2π
√

α′ 2 · 3− 1

6 dx2)

+ ∗9̃

(

4(2π
√

α′)3
3
√

3f1
4

1

γ2γ3
vol4

)

(B.9)

F3 = −4(2π
√

α′)2
3
√

3

√

4π2α′

γ1
(f2

4 dx5 ∧ dx6 ∧ dx2 + f3
4 dx2 ∧ dx3 ∧ dx4) (B.10)

F1 =
f0√
γ1

9
1

3 Θ1 (B.11)

1

2κ2
10B

=
1

2κ2
10A

γ1

4π2α′ 9
1

3

(B.12)

Θ1 = 2π
√

α′dx1 + 2π
√

α′h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) . (B.13)

The last line is again only valid locally. We use the notation where, ∗9, means the Hodge

star with respect to the metric after T-duality without the x1-direction, while, ∗9̃, means

the Hodge star with respect to the metric after T-duality without the x2-direction. vol4 is

the volume form of AdS4.

The first T-duality transformation splits the original orientifold (2.17) into an O5- and

an O7-plane:

O5 :
4
√

3
√

2

2π
√

α′ 9
1

6

(+dx3 ∧ dx5 − dx4 ∧ dx6) (B.14)

O7 :
4
√

3
√

2 9
1

6

2π
√

α′ 2 · 3− 1

6

(−dx4 ∧ dx5 − dx3 ∧ dx6) ∧ (2π
√

α′ 2 · 3− 1

6 dx2) ∧ Θ1 (B.15)

After this first T-duality the solution still has an (approximate) U(1)-isometry in the

x2-direction, x2 ∈ [0,
√

3/2]. We take

L2
A =

4π2α′

γ1

(

4

3
9

1

3

)

(B.16)

ΘB = 2π
√

α′
(

2√
3

9
1

6

)

dx2 (B.17)

ΘA = 2 · 3− 1

6 Θ2 (B.18)

α = β = 0 , (B.19)

this results in the solution (3.28)–(3.36).
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C. Type IIA - M-theory dictionary

For the type IIA theory we start again from the action (A.1), for M-theory we take as

definition of our theory,

SM =
1

2κ2
11

∫ √−g11R − 1

4κ2
11

∫

F4 ∧ ∗F4 (C.1)

− 1

4κ2
11

∫

C3 ∧ F4 ∧ F4 . (C.2)

The compactification of M-theory on a circle gives the following type IIA - M-theory

correspondence:

ds2
A = ds2

10 ↔ ds2
M = L2

Me
4

3
ϕAΘ2

M + e−
2

3
ϕAds2

10

ϕA

H3 ↔ G4 = F4 + H3 ∧ LMΘM

F4

F2 ↔ dΘM = 1
LM

F2 ,

ΘM = dxM + 1
LM

C1 ,

F0 = 0
1

2κ2

10A

↔ 1
2κ2

11M

= 1
2κ2

10A
LM

,

LM = 2π κ10A√
π(2π

√
α′)3

,

(C.3)

with xM ∈ [0, 1].
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